МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНСТРОЙ РОССИИ)

г. Москва, ул.Садовая-Самотечная, д.10, стр.1

ТЕХНИЧЕСКОЕ СВИДЕТЕЛЬСТВО

О ПРИГОДНОСТИ ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НОВОЙ ПРОДУКЦИИ И ТЕХНОЛОГИЙ, ТРЕБОВАНИЯ К КОТОРЫМ НЕ РЕГЛАМЕНТИРОВАНЫ НОРМАТИВНЫМИ ДОКУМЕНТАМИ ПОЛНОСТЬЮ ИЛИ ЧАСТИЧНО И ОТ КОТОРЫХ ЗАВИСЯТ БЕЗОПАСНОСТЬ ЗДАНИЙ И СООРУЖЕНИЙ

№ 7037-24

г. Москва

Выдано

03 апреля 2024 г.

Настоящим техническим свидетельством подтверждается пригодность для применения в строительстве новой продукции указанного наименования.

Техническое свидетельство подготовлено с учетом обязательных требований строительных, санитарных, пожарных, промышленных, экологических, а также других норм безопасности, утвержденных в соответствии с действующим законодательством.

ЗАЯВИТЕЛЬ

ООО «ПТК Тех-КРЕП»

Россия, 215850, Смоленская область, Кардымовский район,

пгт. Кардымово, ул. Ленина д. 65

Тел.: 8 (48167) 4-21-41; e-mail: info@t-krep.ru; www.t-krep.ru

ИЗГОТОВИТЕЛЬ

ТОО «Энергон-Сервис»

Казахстан, 090000, г. Уральск, ул. В. Чапаева, 22

НАИМЕНОВАНИЕ ПРОДУКЦИИ Клеевые анкеры «Tech-KREP» марки PESF PRO

пгодукции

принципиальное описание продукции - клеевой анкер включает в себя резьбовую шпильку, установленную в просверленное отверстие в строительном основании, которое предварительно заполняется (инъецируется) специальным двухкомпонентным клеевым составом. В результате полимерный состав затвердевает, придавая монолитное состояние креплению. Геометрические параметры: диаметр шпильки – от М8 до М16, длина шпильки – от 70 до 2000 мм.

назначение и допускаемая область применения - для крепления строительных материалов, изделий и оборудования к наружным и внутренним конструкциям зданий и сооружений различного назначения. Анкеры применяют в качестве крепления к основаниям из бетона без трещин B25-B60, кладки из полнотелого и пустотелого керамического и силикатного кирпичей, блоков ячеистого бетона.

показатели и параметры, характеризующие надежность и безопасность продукции - для выполнения предварительного расчета необходимого количества анкеров величины допускаемых вытягивающих нагрузок R_{rec} (в зависимости от типа анкера и глубины заделки)

из бетона класса не ниже В 25 без трещин — от 8,6 до 23,3 кH, в кладке из полнотелого керамического кирпича с пределом прочности при сжатии не менее 17,5 МПа — от 0,6 до 1,2 кH; из щелевого кирпича с пределом прочности при сжатии не менее 12,0 МПа — от 1,2 до 1,6 кH; из ячеистого бетона с пределом прочности на сжатие не менее 5 МПа — от 1,0 до 1,4 кH.

дополнительные условия производства, применения и содержания продукции, контроля качества - соответствие конструкции, технологии и контроля качества требованиям нормативной документации, в том числе в обосновывающих техническое свидетельство материалах.

ПЕРЕЧЕНЬ ДОКУМЕНТОВ, ИСПОЛЬЗОВАННЫХ ПРИ ПОДГОТОВКЕ ТЕХНИЧЕСКОГО СВИДЕТЕЛЬСТВА - техническая документация производителя, заключение по коррозионной стойкости и протоколы испытаний специализированных организаций, европейские технические допуски, законодательные акты и нормативные документы, указанные в приложении.

Приложение: заключение Федерального автономного учреждения «Федеральный центр нормирования, стандартизации и технической оценки соответствия в строительстве» (Φ AУ « Φ ЦС») от 02 апреля 2024 г. на 15 л.

Настоящее техническое свидетельство о подтверждении пригодности продукции указанного наименования действительно до 03 апреля 2026 г.

Директор Федерального автономного учреждения

«Федеральный центр нормирования, стандартизации и технической оценки соответствия в строительстве»

Зарегистрировано 03 апреля 2024 г., регистрационный № 7037-24

Примечание: подписано директором ФАУ «ФЦС» в соответствии с Приказом Минстроя России от 8 февраля 2024 г. \mathbb{N} 80/пр

В подлинности настоящего документа можно удостовериться по тел.: (495)133-01-57 (доб.123)

ФЕДЕРАЛЬНОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ЦЕНТР НОРМИРОВАНИЯ, СТАНДАРТИЗАЦИИ И ТЕХНИЧЕСКОЙ ОЦЕНКИ СООТВЕТСТВИЯ В СТРОИТЕЛЬСТВЕ» (ФАУ «ФЦС»)

г. Москва, Фуркасовский пер., д. 6

ЗАКЛЮЧЕНИЕ

Техническая оценка пригодности для применения в строительстве

«КЛЕЕВЫЕ АНКЕРЫ «Tech-KREP» марки PESF PRO»

изготовитель ТОО «Энергон-Сервис»

Казахстан, 090000, г. Уральск, ул. В. Чапаева 22

заявитель ООО «ПТК Tex-КРЕП»

Россия, 215850, Смоленская область, Кардымовский район,

пгт. Кардымово, ул. Ленина д. 65

Тел.: 8 (48167) 4-21-41; e-mail: info@t-krep.ru; www.t-krep.ru

Оценка пригодности продукции указанного наименования для применения в строительстве проведена с учетом обязательных требований строительных, санитарных, пожарных, экологических, а также других норм безопасности, утвержденных в соответствии с действующим законодательством, на основе документации и данных, представленных заявителем в обоснование безопасности продукции для применения по указанному в заключении назначению.

Всего на <u>15</u> страницах, заверенных печатью ФАУ «ФЦС».

Начальник Управления

технической оценки соответствия

в строительстве ФАУ «ФЦС»

А.И. Мельников

02 апреля 2024 г.

ВВЕДЕНИЕ

В соответствии с постановлением Правительства Российской Федерации от 27 декабря 1997 г. № 1636 (в редакции постановления Правительства от 15 февраля 2017 г. № 191) новые материалы, изделия и конструкции подлежат подтверждению пригодности для применения в строительстве на территории Российской Федерации. Это положение распространяется на продукцию, требования к которой не регламентированы нормативными документами полностью или частично и от которой зависят безопасность и надежность зданий и сооружений.

Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании» определены виды действующих в стране нормативных документов, которыми регулируются вопросы безопасности. Это технические регламенты и разработанные для обеспечения их соблюдения национальные стандарты и своды правил в соответствии с публикуемыми перечнями, а до разработки технических регламентов - государственные стандарты, своды правил (СП) и другие нормативные документы, ранее принятые федеральными органами исполнительной власти. При наличии этих документов подтверждение пригодности продукции для применения в строительстве не требуется.

Наличие стандартов организаций или технических условий на новую продукцию, не исключает необходимости подтверждения пригодности этой продукции для применения в строительстве. Оценка и подтверждение пригодности должны осуществляться в процессе освоения производства и применения новой продукции и результаты оценки следует учитывать при подготовке нормативных документов на эту продукцию, в т.ч. стандартов организаций, а также технических условий, которые являются составной частью конструкторской или технологической документации.

Сертификация (подтверждение соответствия) продукции и выполняемых с её применением строительных и монтажных работ осуществляется на добровольной основе в рамках систем добровольной сертификации, в документации которых определены правила проведения сертификации этой продукции и (или) работ с учетом сведений, приведенных в ТС.

Наличие добровольного сертификата может стать необходимым по требованию заказчика (приобретателя продукции) или саморегулируемой организации, членом которой является организация, выполняющая работы с применением продукции, на которую распространяется TC.

Настоящее Введение представляется в порядке информации.

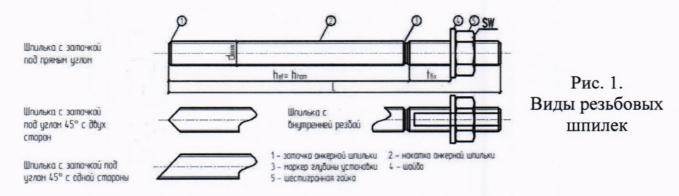
1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Объектом настоящего заключения (техническая оценка или ТО) являются клеевые анкеры «Tech-KREP» марки PESF PRO (далее – анкеры или продукция), изготавливаемые ТОО «Энергон-Сервис» (Казахстан) и поставляемые ООО «ПТК Тех-КРЕП» (Смоленская обл., пгт. Кардымово)

1.2. ТО содержит:

назначение и область применения продукции;

принципиальное описание продукции, позволяющее проведение ее идентификации;


основные технические характеристики и свойства продукции, характеризующие безопасность, надежность и эксплуатационные свойства продукции;

дополнительные условия по контролю качества производства продукции; выводы о пригодности и допускаемой области применения продукции.

- 1.3. В заключении подтверждаются характеристики продукции, приведенные в документации изготовителя, которые могут быть использованы при разработке проектной документации на строительство зданий и сооружений.
- 1.4. Вносимые изготовителем продукции изменения в документацию по производству продукции отражаются в обосновывающих материалах и подлежат технической оценке, если эти изменения затрагивают приведенные в заключении данные.
- 1.5. Заключение не устанавливает авторских прав на описанные в обосновывающих материалах технические решения. Держателем подлинника технического свидетельства и обосновывающей документации является заявитель.
- 1.6. Заключение составлено на основе рассмотрения материалов, представленных заявителем, технологической документации изготовителя, содержащей основные правила производства продукции, а также результатов проведенных расчетов, испытаний и экспертиз, и других обосновывающих материалов, которые были использованы при подготовке заключения и на которые имеются ссылки. Перечень этих материалов приведен в разделе 6 заключения.

2. ПРИНЦИПИАЛЬНОЕ ОПИСАНИЕ, НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ ПРОДУКЦИИ

- 2.1. Клеевой анкер анкер, состоящий из стального элемента и клеевого состава, в котором передача усилий со стального элемента на основание осуществляется через клеевой состав.
- 2.2. Анкерная система включает в себя картридж в твердой оболочке со статическим смесителем и резьбовую шпильку (рис.1) В случае монтажа в пустотелый или щелевой материал применяют стальные или полимерные гильзы (рис.2). Картриджи клеевого анкера «TECH-KREP» марки PESF PRO (рис.3) поставляются в шести исполнениях 75-420 мл (табл. 1).

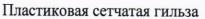


Рис. 2. Сетчатые гильзы

Рис.3.

Картридж анкера «Tech-KREP» марки PESF PRO

2.3. Общие характеристики анкеров и область применения приведены в табл.1.

Таблица 1

Марка	Объем	Описание	Стальной стержень
анкера	упаковки, мл		и строительное основание
PESF PRO	75, 165, 280, 300, 400, 420	Клеевой анкер с двух- компонентным составом на основе полиэстерной смолы, без стирола	резьбовая шпилька М8-М16 — бетон без трещин, резьбовая шпилька М8-М12 — кладочные материалы

- 2.4. Резьбовые шпильки изготавливаются из углеродистых или коррозионностойких сталей.
- 2.5. Защиту от коррозии шпилек из углеродистых сталей обеспечивает слой цинка не менее 10 мкм, в случае нанесения покрытия гальваническим методом или термодиффузионное цинковое покрытие по ГОСТ Р 9.316-2006 с толщиной покрытия 45-50 мкм.

Анкерные шпильки поставляются как в стандартном исполнении (табл.6), так и длиной 1 или 2м, которые нарезаются необходимой длины в зависимости от требуемой глубины установки. Срез шпилек из углеродистых сталей должен быть защищён антикоррозионным лакокрасочным покрытием.

- 2.6. Анкерующий эффект обеспечивается за счет сил межмолекулярного взаимодействия в полимерном составе, затвердевающим в процессе его полимеризации. Время полимеризации зависит от температуры основания и картриджа.
 - 2.7. Маркировка клеевых анкеров:

На картриджах клеевых анкеров указывают название производителя, торговую марку (рис. 4.), инструкцию по монтажу, инструкцию по безопасному применению, артикул, срок годности, объём состава, время схватывания и полного затвердевания.

Рис.4. Товарный знак

Маркировка шпилек не предусмотрена.

2.8. Клеевые анкеры «Tech-KREP» предназначены для крепления строительных материалов, изделий и оборудования к наружным и внутренним конструкциям из бетона, кладки из полнотелого и пустотелого керамического и силикатного кирпичей и из блоков ячеистого бетона зданий и сооружений различного назначения.

- 2.9. Анкеры могут использоваться для крепления кронштейнов к основанию в конструкциях навесных фасадных систем с воздушным зазором (НФС), на основании расчета несущей способности соединений с соблюдением предъявляемых к ним требований.
- 2.10. Анкеры предназначены для крепления элементов, передающих статические нагрузки.

Возможность применения анкеров для крепления строительных конструкций, испытывающих динамические воздействия (в т.ч. сейсмические, ударные, циклические) должна быть установлена экспериментально и обоснована расчётом для конкретного объекта. *)

- 2.11. Анкеры могут использоваться в промышленном и гражданском строительстве (в том числе при реконструкции) для крепления элементов перекрытий, прокладки инженерных коммуникаций, крепления подвесных потолков, установки несущих, самонесущих и навесных элементов конструкций, монтажа лифтовых направляющих, фундаментов, колонн, балконов, лестничных маршей, ограждений, стеллажей, навесного оборудования, светопрозрачных и рекламных конструкций при реставрации памятников архитектуры, а также в дорожном строительстве для устройства шумозащитных экранов, барьерных ограждений, информационных щитов, облицовки тоннелей и т.д.
- 2.12. Анкеры предназначены для анкеровки в бетоне без трещин класса прочности C20/25 (B25) C50/60 (B60).
- 2.13. Область применения анкеров в зависимости от среды эксплуатации приведена в табл. 2.

Таблица 2

Материал			Характеристики среды						
резьбовой	Тип и толщина	Н	аружной	внутренней					
шпильки	покрытия	Зона	Степень	Влажностный	Степень				
шильки		влажности	агрессивности	режим	агрессивности				
УС	Электроцинковое (≥10мкм)	_		Сухой,	Неагрессивная				
	электроципковое (Етомкм)			нормальный	театрессивная				
KC A2	_	Сухая,	Слабоагрессивная	Сухой,	Неагрессивная,				
RC AZ	-	нормальная	Слаоба рессивная	нормальный	слабоагрессивная				
	термодиффузионное цин-	Сухая,	Слабоагрессивная,	Сухой,	Неагрессивная,				
УС	ковое покрытие по ГОСТ Р	нормальная,	среднеагрессивная	нормальный,	слабоагрессивная				
	9.316-2006 (≥45мкм)	влажная	среднеат рессивная	влажный	среднеагрессивная				
		Сухая,	Слабоагрессивная,	Сухой,	Неагрессивная,				
KC A4	-	нормальная,	среднеагрессивная	нормальный,	слабоагрессивная				
		влажная	среднеат рессивная	влажный	среднеагрессивная				
		Сухая,	Слабоагрессивная,	Сухой,	Неагрессивная,				
KC A5			среднеагрессивная,		слабоагрессивная				
(HCR)	7 · · · · · · · · · · · ·	влажная	сильноагрессивная,	влажный,	среднеагрессивная,				
		кындынд	сильноаг рессивная	мокрый	сильноагрессивная				

Примечания

Зона влажности и степень агрессивности воздействия окружающей среды определяются заказчиком по конкретному объекту строительства с учетом СП 28.13330.2017, СП 50.13330.2012 и ГОСТ 9.039.

В атмосферных условиях с большим содержанием сернистого газа и хлоридов - в автомобильных туннелях, на гидростанциях, в водных бассейнах, на гидроэлектростанциях и в непосредственной близости от моря должен применяться крепеж из коррозионностойкой кислотоупорной стали HCR (High Corrosion Resistance).

^{*) -} применение анкеров для крепления строительных конструкций, испытывающих динамические воздействия, не является предметом настоящей технической оценки.

2.14. Применение анкеров по температуре эксплуатации см. в табл. 3

Таблина 3

Рабочий диапазон	Максимальная температура, °С					
температур, °С	долговременная	кратковременная				
от -40 до +40	не более +24	+40				
от -40 до +50	не более +40	+50				

- 2.15. Анкеры могут быть установлены в заполненные водой отверстия.
- 2.16. Анкерное крепление должно быть защищено от воздействия огня таким образом, чтобы в случае пожара, крепление было способно выдержать воздействие огня без разрушения в течение необходимого времени (установленный предел огнестойкости).
- 2.17. Требования пожарной безопасности зданий, сооружений и их конструкций, в которых применяют анкеры, определяются Федеральным законом № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» и ГОСТ 31251-2008.

3. ПОКАЗАТЕЛИ И ПАРАМЕТРЫ, ХАРАКТЕРИЗУЮЩИЕ НАДЕЖНОСТЬ И БЕЗОПАСНОСТЬ ПРОДУКЦИИ

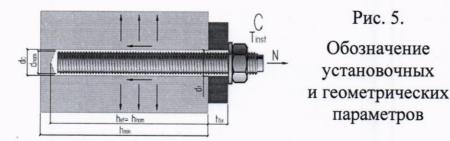
- 3.1. Необходимые типы и размеры клеевых анкеров, а также их количество определяют на основании расчета по несущей способности и оценке коррозионной стойкости анкера, исходя из конкретных условий строительства: материала присоединяемых элементов, высоты здания, допускаемой нагрузки на анкер, окружающей среды, конструктивных решений и других факторов.
 - 3.2. Характеристики материалов анкерных шпилек приведены в табл. 4 и 5. Таблица 4

Марка стали	Характеристика детале	й анкерных шпилек		
тыарка стали	Наименование комплектующих	Материал		
SKA ZN	Анкерная шпилька, класс прочности не ниже 4.6 (ГОСТ ISO 898-1-2014)	Углеродистая сталь, гальванизированная, покрытие цинком не менее 10 мкм (ГОСТ ISO 4042-2015)		
SKA TD	Шестигранная гайка* (ГОСТ ISO 898-2-2013) Шайба плоская* (ГОСТ ISO 7093-1-2016)	Углеродистая сталь с термодиффузионным цинковым покрытием 45-50мкм		
SKA A2	Анкерная шпилька (ГОСТ ISO 3506-1-2014)	Коррозионностойкая сталь А2		
SKA A4	Шестигранная гайка* (ГОСТ ISO 3506-2-	Коррозионностойкая сталь А4		
SKA HCR	2014) Шайба плоская* (ГОСТ ISO 7093-1-2016)	Коррозионностойкая сталь А5		

^{*) -} класс прочности и марка стали, защитное покрытие гайки и шайбы должны соответствовать применяемым для изготовления шпильки.

Таблица 5

Сталь	Механи характе	ические ристики	Химический состав								
	Предел прочности, МПа	Предел текучести, МПа	С	Si	Mn	P	S	Cr	Мо	Ni	Ti
			7	/глерод	цистые	стали					
4.6	400	240	0,12	0,1	0,12	0,048	0,045	-	-	-	-
5.8	500	400	0,16	0,1	0,31	0,045	0,028		-	-	-
6.8	600	480	0,151	0,64	0,38	0,011	0,007	-	-	-	-


Сталь	Механи характе	ические ристики		Химический состав						Ф опенки	ur
	Предел прочности, МПа	Предел текучести, МПа	С	Si	Mn	P	S	Cr	Mo	Ni	Tigssel 8180398
8.8	800	640	0,15-0,40	-	-	0,035	0,035		-	O COLOR	INVOCANI TO CHANGE
10.9	1000	900	0,15-0,35	-	-	0,035	0,035		-	-	-
			Корр	озион	ностойн	сие стал	И				
1.4301	580	450	≤0,07	≤1,0	≤2,0	0,045	0,015-	17,5-19,5	-	8,0-10,5	-
1.4401	400	450	≤0,07	≤1,0	≤2,0	0,045	≤0,015	16,5-18,5	2,0-2,5	10,0-13,0	-
1.4404	660	205	≤0,03	≤1,0	≤2,0	0,045				10,5-13,5	
1.4529	500-700	200	≤0,08	≤1,0	≤2,0	0,045				11,0-14,0	-
1.4565	650-850	300	≤0,02	≤0,7	≤5,0	0,030				16,0-19,0	-
1.4571	750	300	≤0,08	≤1,0	≤2,0	0,045				10,5-13,5	

3.3. Обозначение установочных и геометрических параметров анкерных шпилек приведены в табл.6 и на рис. 5.

Таблица 6

+

№ <u>№</u> п/п	Наименование геометрического или установочного параметра		Условное обозначение
1.	Диаметр резьбы	MM	d _{nom}
2.	Длина шпильки	MM	L
3.	Диаметр отверстия в основании	MM	do
4.	Диаметр отверстия в прикрепляемой детали	MM	d _f
5.	Максимальная толщина прикрепляемой детали	MM	t _{fix}
6.	Глубина отверстия	MM	h _{nom}
7.	Эффективная глубина анкеровки	MM	hef
8.	Рекомендованный момент затяжки	Нм	Tinst
9.	Минимальная толщина основания	MM	h _{min}
10.	Минимальное краевое расстояние	MM	C _{min}
11.	Минимальное межосевое расстояние	MM	Smin
12.	Размер гайки под ключ	MM	SW

3.4. Номенклатура анкерных шпилек из углеродистой стали классов 4.6, 5.8, 8.8, 10.9, с гальваническим или термодиффузионным цинковыми покрытиями, из коррозионностойкой стали A2, A4, A5 и значения геометрических, функциональных и установочных параметров при установке в бетон В 25 — В60 без трещин для шпилек приведены в табл. 7.

Таблица 7

№№ ПП	Тип анкерной шпильки	d _{nom}	L	do	d_{f}	h _{ef}	h _{nom}	SW	Tinst	t_{fix}
1	8x70	8	70	10	9	50	55	13	10	10
2	8x85	8	85	10	9	65	70	13	10	10
3	8x100	8	100	10	9	80	85	13	10	20

									BA LAY	
№№ ПП	Тип анкерной шпильки	d _{nom}	L	do	d_{f}	hef	h _{nom}	SW	ME LE TRE	tfix
4	8x125	8	125	10	9	80	85	13	510	45
5	8x150	8	150	10	9	80	85	13	10	60
6	10x110	10	110	12	12	90	95	17	20	10
7	10x130	10	130	12	12	90	95	17	20	25
8	10x150	10	150	12	12	90	95	17	20	45
9	10x160	10	160	12	12	90	95	17	20	55
10.	10x180	10	180	12	12	90	95	17	20	75
11	10x200	10	200	12	12	90	95	17	20	95
12	12x130	12	130	14	14	100	105	19	40	20
13	12x150	12	150	14	14	100	105	19	40	35
14	12x160	12	160	14	14	100	105	19	40	45
15	12x180	12	180	14	14	100	105	19	40	65
16	12x200	12	200	14	14	100	105	19	40	85
17	16x150	16	150	18	18	125	130	24	80	10
18	16x200	16	200	18	18	125	130	24	80	55
19	16x250	16	250	18	18	125	130	24	80	105
20	16x300	16	300	18	18	125	130	24	80	155

3.5. Номенклатура, геометрические и установочные параметры сетчатых гильз (рис. 6) и подбор шпилек нужного диаметра приведены в табл. 8.

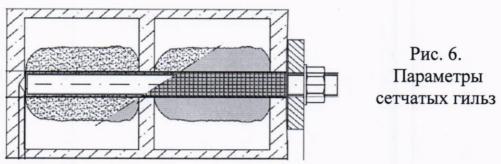


Таблица 8

№№ ПП	Марка сетчатой гильзы	d _{nom}	do	Длина сетчатой гильзы h (мм)	h _{nom}	hef
		Сетчатая і	полимерн	ая гильза		
1	TK PRO 12x45	6-8	12	45	50	45
2	TK PRO 12x50	6-8	12	50	55	50
3	TK PRO 12x60	6-8	12	60	65	60
4	TK PRO 12x80	6-8	12	80	85	80
5	TK PRO 15x85	8-12	16	85	90	85
6	TK PRO 15x100	8-12	16	100	105	100
7	TK PRO 15x135	8-12	16	135	140	135
8	TK PRO 20x85	12-16	20	85	90	85
		Сетчатая	и стальна	я гильза		
9	TK PRO 12x1000 M	6-8	12	1000*	*	*
10	TK PRO 14x1000 M	8-10	14	1000*	*	*
11	TK PRO 15x85 M	8-12	16	85	90	85
12	TK PRO 15x130 M	8-12	16	130	135	130
13	TK PRO 15x140 M	8-12	16	140	145	140
14	TK PRO 16x1000 M	8-12	16	1000*	*	*
15	TK PRO 22x1000 M	12-16	22	1000*	*	*
16	TK PRO 22x150 M	12-16	22	150	155	150
17	TK PRO 22x200 M	12-16	22	200	205	200

^{*) -} изделие нарезается под глубину отверстия, $h_{nom} = h = 5$ мм, $h_{ef} = h$

3.6. Величины допускаемых вытягивающих нагрузок R_{rec} и нагрузок на срез V_{rec} , применяемых для выполнения предварительных расчетов количества клеевых анкеров PESF PRO для различных строительных оснований приведены в табл. 9 и 10.

Таблица 9

Наименование параметра	Значения допу PESF PRO в б	Значения допускаемой вытягивающей нагрузки для анкеров PESF PRO в бетоне B25 в зависимости от диаметра шпильки класса не ниже 5.8							
	M8	M10	M12	M16					
hef, MM	80	90	110	125					
Rrec, KH	8,6	14,0	18,4	23,3					
V _{rec} , κH	5,4	8,6	12,5	23,3					

Таблица 10

Материал основания	Значения допускаемых вытягивающих нагрузок R _{rec} при применении в кладочных материалах, кN					
	M8	M10	M12			
Глубина анкеровки hef, мм	80	85	95			
В кладке из полнотелого керамиче-						
ского кирпича с пределом прочно-	0,6	1,0	1,2			
сти при сжатии не менее 17,5 МПа			,			
Глубина анкеровки hef, мм	80	85	85			
В кладке из пустотелого керамиче-						
ского кирпича с пределом прочно-	1,2	1,6	1,6			
сти при сжатии не менее 12,0 МПа			,			
Глубина анкеровки hef, мм	80	85	90			
Кладка из блоков ячеистого бетона						
с пределом прочности на сжатие не	1,0	1,2	1,4			
менее 5МПа			,			

- 3.7. В таблицах 8 и 9 приведены нагрузки для одиночных клеевых анкеров «Tech-KREP» марки PESF PRO со шпилькой класса 5.8, установленных в сухое отверстие в бетоне B25 для диапазона изменения температур от -40°С до +40°С, максимальной длительной температуре эксплуатации +24°С, максимальной кратковременной температуры при эксплуатации +40°С.
- 3.8. Допускаемые вытягивающие нагрузки при применении анкеров в основаниях, отличающихся по прочностным показателям, указанным в табл. 9-10 при других классах прочности стальных резьбовых шпилек, арматуры, глубинах анкеровок, температурных режимах определяются проектными организациями с учетом рекомендаций производителя и коэффициентов безопасности. Для расчета группы анкеров с учетом влияния факторов краевых и межосевых расстояний, комбинации действия сил вырыва и среза, наличия воды в отверстии, прочностных характеристик других классов бетонов и шпилек, необходимо пользоваться рекомендациями производителя.
- 3.9. Для расчета группы анкеров с учетом влияния факторов краевых и межосевых расстояний, комбинации действия сил вырыва и среза, прочностных характеристик других классов бетонов необходимо пользоваться СП 513.1325800.2022 «Анкерные крепления к бетону. Правила проектирования» и данными, приведенными в техническом паспорте [2].

4. ДОПОЛНИТЕЛЬНЫЕ УСЛОВИЯ ПРОИЗВОДСТВА, ПРИМЕНЕНИЯ, СОДЕРЖАНИЯ И КОНТРОЛЯ КАЧЕСТВА

- 4.1. Безопасная и надежная работа клеевых анкеров в строительных конструкциях обеспечивается при соблюдении следующих требований к:
 - назначению и области применения клеевых анкеров;
 - применяемым в клеевых анкерах материалам и изделиям;
 - методам заводского контроля анкеров и их элементов;
 - методам установки анкеров;
 - применяемому оборудованию для установки анкеров;
 - проведению контрольных испытания анкеров на конкретных объектах.
 - 4.2. Приемку клеевых анкеров производят партиями.

Объем партии устанавливают в пределах сменного выпуска анкеров одного типа.

Производитель должен:

- использовать комплектующие материалы, качество которых подтверждено технической документацией завода изготовителя;
 - осуществлять входной контроль материалов;
 - контролировать геометрические параметры элементов анкера;
 - проверять свойства материалов;
- контролировать толщину антикоррозионного покрытия стальных элементов.
- 4.3. При приемке продукции от каждой партии выборочно осуществляют контроль внешнего вида, геометрических размеров, формы, маркировки, упаковки и комплектности изделий (табл.11). Кроме того, ежегодно проводят испытания в аккредитованных лабораториях.

Таблица 11

№№ ПП	Предмет контроля	Контролируемый параметр		
1.	Анкерная шпилька Диаметр, длина, накатка, прочность на растяжен текучести, толщина защитного покрытия			
2.	Гайка	Свободный ход при навинчивании, размер под ключ, толщина защитного покрытия		
3.	Шайба	Диаметр, толщина, твёрдость, толщина защитного покрытия		
4.	Картридж с клеевым составом	Срок годности, количество состава, маркировка		
5.	Сетчатая полимерная гильза	Диаметр, длина		
6.	Сетчатая стальная гильза	Диаметр, длина		

- 4.4. В сопроводительном документе на клеевые анкеры должна содержаться следующая информация:
 - инструкция по установке;
 - диаметр бура;
 - глубина монтажного отверстия;
 - диаметр анкерной шпильки;
 - минимальная эффективная глубина анкеровки;
 - максимальная эффективная глубина анкеровки;

- максимальная толщина закрепляемого материала;
- минимальная толщина базового основания;
- рекомендации по проведению монтажных работ, включая чистку монтажного отверстия специальными устройствами;
 - температура установки компонентов анкерного крепления;
 - срок годности клеевого анкера;
- время затвердевания до момента приложения нагрузки на анкерную шпильку в зависимости от температуры базового материала во время установки;
- допустимые диапазоны температуры базового материала во время установки;
 - рекомендуемый момент затяжки;
 - список рекомендуемых дозаторов;
 - рекомендации по транспортировке и хранению клеевых анкеров;
 - предписания по технике безопасности.
 - 4.5. Общие требования к установке клеевых анкеров в основание.
- 4.5.1. Установку клеевых анкеров необходимо проводить в полном соответствии с технической документацией, инструкцией по установке анкеров и применяемому оборудованию с обязательным проведением контроля технологических операций и составлением актов на скрытые работы, включая дополнительную проверку:
 - прочности материала основания;
 - наличия или отсутствия пустот в основании;
 - отсутствий повреждения арматуры в просверленных отверстиях;
 - очистки просверленного отверстия от буровой муки;
 - отсутствия попадания пузырьков воздуха в клеевой состав;
 - степени заполнения отверстия клеевым составом;
- соблюдения установочных параметров для краевых и осевых расстояний (без минусовых отклонений);
 - защиты среза шпилек из углеродистых сталей от коррозии;
 - соблюдения требуемой величины момента затяжки (T_{inst}).

Сверление отверстий необходимо производить перпендикулярно плоскости несущего основания с помощью перфоратора и специального сверла в режиме удар-сверление или режиме сверление, в зависимости от прочности материала и наличия пустот. Не допускать повреждения рабочей арматуры, в случае ошибочно просверленного отверстия, заполнить клеевым составом.

4.5.2. Значения установочных параметров для клеевых анкеров в бетоне класса не ниже B25 без трещин для шпилек указаны соответственно для PESF PRO в табл. 12.

Таблица 12

Наименование установочного п	Диаметр анкерной шпильки				
паименование установочного п	M8	M10	M12	M16	
Номинальный диаметр сверла	Іоминальный диаметр сверла d _{nom} , мм		12	1.4	10
Диаметр отверстия в основании	d ₀ , мм	10	12	14	18
Максимальный диаметр режущей	d _{cut} max ≤,	10,45	12,5	14,5	18,55
кромки сверла	MM				
Глубина анкеровки	hef, мм	60	70	80	100
Глубина отверстия	h₀≤, мм	$h_{\rm ef} + 5$ мм			

11		Диаметр анкерной пицильки			
Наименование установочного па	M8	M10	M12	M16	
Диаметр отверстия в прикрепляемом элементе	d_f , мм	9	12	14 30	18
Размер ключа по зеву	SW, MM	13	17	19	24
Момент затяжки (в бетоне)	Tinst, HM	10	20	40	80
Минимальное осевое расстояние между анкерами	S _{min} , MM	40	50	60	75
Минимальное осевое расстояние анкера от края	C _{min} , MM	40	50	60	75
Минимальная толщина основания	h _{min} , мм	h _{ef} +30мм≥100мм		h ef+2 d ₀	

4.5.3. Значения краевых и межосевых расстояний для клеевых в кладке из кирпича, блоков из ячеистого бетона для всех типов шпилек указаны соответственно в табл. 13.

Таблица 13

Диаметр шпильки, мм	hef, MM	h₀≤	T_{inst}	C _{min} , MM	S _{min} , MM
Полнотелый кирпич	с пределом	прочности п	ри сжатии	не менее 17,	5 МПа
M8	80		5	120	240
M10	85	hef + 5 _{MM}	8	128	255
M12	95	1 [10	143	285
Пустотелый кирпич	с пределом	прочности п	ри сжатии	не менее 12,0	0 МПа
M8	80		3	100	100
M10	85	hef + 5 _{MM}	4	100	100
M12	85		6	120	120
Блоки из ячеистого бето	она с преде	елом прочност	ги при сжа	тии не менее	5,0 МПа
M8	80		2	50	50
M10	85	hef + 5 _{MM}	2	50	50
M12	90		2	50	50

- 4.5.4. В случае неправильного сверления ближайшее отверстие должно находиться на расстоянии не менее глубины отверстия или не менее 5 номинальных диаметров используемого сверла.
 - 4.5.5. Установка клеевого анкера производится следующим образом:
- перед введением химического состава в просверленное отверстие из картриджа, используя специальные дозаторы необходимо выдавить массу вне отверстия не менее 5 см до получения однородного цвета. Смешивание химического состава и заполнение отверстия производится при помощи статического смесителя;
 - отверстие прочищают от буровой крошки;
- просверленное отверстие должно быть заполнено составом равномерно, начиная со дна отверстия, во избежание попадания внутрь пузырьков воздуха, количество состава определяется расчетом;
- установку резьбовой шпильки в исходное положение осуществляют вручную посредством вкручивания медленными вращательными движениями.
- 4.5.6. При установке клеевых анкеров «Tech-KREP» марки PESF PRO необходимо соблюдать время схватывания и затвердевания, указанных соответственно в табл. 14.

Таблица 14

Температура	Минимальное время				
основания, °С	схватывания, минут	до нагружения анкеров в сухом и влажном отверстии, минут			
от 0 до +4	25	180			
от +5 до +9	15	120			
от +10 до +14	12	90			
от +15 до +19	8	65			
от +20 до +24	6	45			
от +25 до +29	4	30			
+30	3	20			

Примечание: рекомендованная температура картриджа +10 °C при установке от 0 до +5 °C

- 4.5.7. Затяжку гайки необходимо проводить согласно установленного момента, приведенного в табл. 12.
 - 4.5.8. Каждый анкер может быть установлен только один раз.
- 4.6. Кроме того, пригодность анкера к эксплуатации обеспечивается при соблюдении следующих условий:
- 4.6.1. Приёмка строительной организацией клеевых анкеров, хранение их на строительной площадке и монтаж должны выполняться в соответствии с проектной документацией и требованиями настоящего документа.
- 4.6.2. Поставляемые потребителям клеевые анкеры должны полностью удовлетворять предъявляемым к ним требованиям и сохранять свои свойства в течение установленных изготовителем сроков с учётом условий эксплуатации.
- 4.6.3. Установка клеевых анкеров с истекшим сроком хранения не допускается.
- 4.6.4. Работы по установке анкеров проводят при наличии полного комплекта технической документации, согласованной и утверждённой в установленном порядке.
- 4.6.5. Внесение изменений в проектную документацию, в части области применения клеевых анкеров, допускается только при их официальном согласовании с заявителем или его представителем, а также организацией-разработчиком документации, в соответствии с которой применены клеевые анкеры.
- 4.7. До начала работ по установке анкеров на конкретном объекте необходимо проведение натурных испытаний анкерного крепления для определения несущей способности.

Контрольные испытания рекомендуется проводить в соответствии с [7].

Полученные, после обработки результатов испытаний, значения допускаемых вытягивающих нагрузок на анкер сравнивают со значениями, установленными в таблицах 8 и 9 настоящей ТО, для конкретной марки анкера, вида и прочности материала строительных конструкций. В качестве расчетной величины несущей способности анкерного крепления принимают меньшее значение. В случае невозможности сравнения результатов испытаний с данными таблиц 9-10 см. п 3.8.

Результаты испытаний оформляют протоколом установленной формы.

4.8. Оценку результатов испытаний, составление протокола и определение допускаемого вытягивающего усилия на клеевые анкеры должны осуществлять уполномоченный представитель строительной организации и испытатель совместно с представителями заказчика.

- 4.9. Работы по установке клеевых анкеров должны осуществлять строительные организации, работники которых прошли специальное обучение и имеют разрешение на право выполнения данного вида работ.
- 4.10. Соблюдение требований настоящего документа обеспечивается на основе проведения контроля правильности установки клеевых анкеров представителями заявителя, уполномоченными организациями, соответствующими службами надзора и контролирующими службами.

5. ВЫВОДЫ

Клевые анкеры «Tech-KREP» марки PESF PRO, изготавливаемые ТОО «Энергон-Сервис» (Казахстан), могут применяться для крепления строительных материалов, изделий и оборудования к наружным и внутренним конструкциям из бетона без трещин класса прочности C20/25 (B25) — C50/60 (B60), кладки из полнотелого и пустотелого керамического и силикатного кирпичей, блоков ячеистого бетона зданий и сооружений различного назначения на основе расчета несущей способности анкеров и оценки их коррозионной стойкости, исходя из конкретных условий строительства, материала соединяемых элементов, конструктивных решений и других факторов.

6. ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ МАТЕРИАЛОВ И НОРМАТИВНЫХ ДОКУМЕНТОВ

- 1. Европейские технические допуски ETA-23/0591 и ETA-23/0592 от 21.08.2023.
- 2. Технический паспорт на клеевые анкеры от 01.06.2023. ООО «ПТК Тех-КРЕП».
- 3. Протоколы лабораторных испытаний №№ 190, 192, 193 и 194 от 14.12.2023, № 098 от 14.08.2023. ИЛ ООО «Технополис», Москва.
- 4. Свидетельство о государственной регистрации на клеевые анкеры № RU.77.01.34.008.E.003049.11.23 от 02.11.2023.
- 5. Заключение № 058/21-501 от 14.07.2021 «Исследование коррозионной стойкости и долговечности шпилек с термодиффузионным цинковым покрытием». НИТУ «МИСиС».
- 6. СТО 05156706-001-2019 «Анкерные крепления к бетону с применением клеевых анкеров. Правила установления нормируемых параметров». Крепежный союз, Москва, 2019.
- 7. СТО 44416204-010-2010 «Крепления анкерные. Метод определения несущей способности по результатам испытаний». ФГУ ФЦС, Москва.
 - 8. Действующие нормативные документы:

Федеральный закон № 384-ФЗ от 30.12.2009 «Технический регламент о безопасности зданий и сооружений»;

Федеральный закон № 123-ФЗ от 22.07.2008 «Технический регламент о требованиях пожарной безопасности»;

СП 20.13330.2016 «СНиП 2.01.07-85* Нагрузки и воздействия»;

СП 16.13330.2017 «СНиП II-23-81* Стальные конструкции»;

СП 28.13330.2017 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии»;

СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий»;

СП 513.1325800.2022 «Анкерные крепления к бетону. Правила проектирования»;

СП 522.1325800.2023 «Системы фасадные навесные вентилируемые. Правила проектирования, производства работ и эксплуатации»;

ГОСТ 31251-2008 «Стены наружные с внешней стороны. Метод испытаний на пожарную опасность»;

ГОСТ ISO 898-1-2014 «Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 1. Болты, винты и шпильки установленных классов прочности с крупным и мелким шагом резьбы»;

ГОСТ ISO 898-2-2015 «Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности с крупным и мелким шагом резьбы»;

ГОСТ ISO 3506-1-2014 «Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Часть 1. Болты, винты и шпильки»;

ГОСТ ISO 3506-2-2014 «Механические свойства крепежных изделий из коррозионностойкой нержавеющей стали. Часть 2. Гайки»;

ГОСТ ISO 4042-2015 «Изделия крепежные. Электролитические покрытия»;

ГОСТ ISO 10684-2015 «Изделия крепежные. Покрытия, нанесенные методом горячего цинкования»;

ГОСТ Р 9.316-2006 «Единая система защиты от коррозии и старения. Покрытия термодиффузионные цинковые. Общие требования и методы контроля»;

ГОСТ 9.039-74 «Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы»;

ГОСТ Р 57787-2017 «Крепления анкерные для строительства. Термины и определения. Классификация»;

ГОСТ Р 57345-2016/EN 206-1:2013 «Бетон. Общие технические условия»; ГОСТ Р 58387-2019 «Анкеры клеевые для крепления в бетон. Методы испытаний»;

ГОСТ Р 70071-2022 «Конструкции подоблицовочные вентилируемых навесных фасадных систем и их соединения. Общие требования защиты от коррозии и методы испытаний».

Ответственный исполнитель

А.Ю. Фролов